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Abstract. We consider a statistical mixture based on that of two identical harmonic oscillators which
is characterized by four parameters, namely, the concentrations (x and y) of diagonal and nondiagonal
bipartite states, and their associated thermal-like noises (T/α and T , respectively). The fully random
mixture of two spins 1/2 as well as the Einstein-Podolsky-Rosen (EPR) state are recovered as particular
instances. By using the conditional nonextensive entropy as introduced by Abe and Rajagopal, we calculate
a bound for the separable-entangled frontier. Although this procedure is known to provide a necessary but
in general not sufficient condition for separability, it does recover, in the particular case x = T = 0 (∀α),
the 1/3 exact result known as Peres’ criterion. The x = 0 frontier remarkably resembles to the critical line
associated with standard diluted ferromagnetism where the entangled region corresponds to the ordered one
and the separable region to the paramagnetic one. The entangled region generically shrinks for increasing T
or increasing α.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm
effect, Bell inequalities, Berry’s phase) – 03.67.-a Quantum information – 05.20.-y Classical statistical
mechanics – 05.30.-d Quantum statistical mechanics

Quantum entanglement is a quite amazing physical phe-
nomenon, and has attracted intensive interest in recent
years due to its possible applications in quantum computa-
tion, teleportation and cryptography, as well as to its con-
nections to quantum chaos [1–19]. A nonextensive statisti-
cal mechanics [20] was proposed in 1988 by one of us, and
is currently applied [21–26] to a variety of thermodynam-
ically anomalous systems which, in one way or another,
exhibit (multi) fractals aspects. Among these anomalous
systems, a prominent place is occupied by systems includ-
ing long-range interactions and Lévy distributions. So be-
ing, it is after all not surprising that this thermostatisti-
cal formalism has interesting implications [27–29] in the
area of quantum entanglement and its intrinsic nonlocal-
ity, thus showing the confluence of two concepts coming
from distinct physical areas.

Quantum systems can be more or less entangled, which
makes relevant the discussion of whether a given system
is or not separable. Separability, which we shall define in
detail later on, is a crucial feature in the discussion on
whether a quantum physical system is susceptible of a
local realistic description with hidden variables. These is-
sues were first discussed in 1935 by Einstein, Podolsky
and Rosen (EPR) [30] and by Schrödinger [31], and since
then by many others [1–19]. As we have mentioned above
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we shall see that entropic nonextensivity provides a path
through which it is possible to discuss quantum entangle-
ment [27,29,32].

In this work we want to analyze the effect that external
(thermal) noise may produce on a quantum device, i.e.,
the influence of thermal-like noise over the entanglement
of a given state. For this goal we study a composite system
of two harmonic oscillators with identical energy spectra.
The mixed state we shall consider for this bipartite system
involves Boltzmann-like probabilities (through the tem-
perature parameter T ) as well as a few additional terms
in such a way that the bipartite spin 1/2 system is recov-
ered as a particular case. More precisely, the 1/3 Peres’
criterion for separability will emerge as the T = 0 limit of
this specific mixed state.

Following along the lines of Abe and Rajagopal [27], we
use the nonextensive entropy Sq ≡ 1−Trρq

q−1 (q ∈ R; S1= −
Tr ρ ln ρ), ρ being the density matrix, in order to study the
frontier between separable (quantum nonentangled) and
nonseparable (quantum entangled) regions. More precisely,
we determine a frontier in some parameter-space which is
either the exact one or an overestimation of the separable
region. We remind that the entropic arguments that are
used within this approach provide, like the Peres’ partial
transpose method [12], necessary but not sufficient condi-
tions for separability.
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In order to make this work self-contained we will
present, in the following, the connection between the
nonextensive statistical mechanics and quantum entangle-
ment. Let us begin with the definition of a generalized
entropy for a quantum system

Sq =
1 − Trρq

q − 1
(q ∈ �; Trρ = 1; S1 = −Tr ρ ln ρ), (1)

where ρ is the density operator. Let us assume now that
ρ is the density operator associated with a composed sys-
tem A+B. Then the marginal density operators are given
by ρA ≡ TrB ρ and ρB ≡ TrA ρ (TrA ρA = TrB ρB = 1).
The systems A and B are said to be uncorrelated (or
independent) if and only if

ρ = ρA ⊗ ρB . (2)

Otherwise they are said to be correlated. Two correlated
systems are said to be separable (or unentangled) if and
only if it is possible to write ρ as follows:

ρ =
W∑
i=1

pi ρ
(i)
A ⊗ ρ

(i)
B

(
pi ≥ 0 ∀i;

W∑
i=1

pi = 1

)
· (3)

The limiting case of independency is recovered for cer-
tainty, i.e., if all pi vanish excepting one which equals
unity. Nonseparability (or entanglement) is at the basis
of the amazing phenomena mentioned before and, as al-
ready pointed, at the center of the admissibility of a lo-
cal realistic description of the system in terms of hidden
variables. As it is known correlation is a concept which
is meaningful both classically and quantically. Entangle-
ment, in the present sense, is meaningful only within quan-
tum mechanics.

The characterization of quantum entanglement is not
necessarily simple to implement, since it might be rela-
tively easy in a specific case to exhibit the form of equa-
tion (3), but it can be nontrivial to prove that it cannot
be presented in that form. Consequently, along the years
appreciable effort has been dedicated to the establishment
of general operational criteria, preferentially in the form
of necessary and sufficient conditions whenever possible.
Peres [12] pointed out a few years ago a necessary condi-
tion for separability, namely the nonnegativity of the par-
tial transpose of the density matrix. In some simple situ-
ations (like the simple mixed state of two spin 1/2) Peres’
criterion is now known to also be a sufficient condition.
But, as soon as the case is slightly more complex (e.g.,
3× 3 or 2× 4 matrices) it is known now to be insufficient.

Within this scenario Abe and Rajagopal [27] recently
proposed a different condition, claimed to be a necessary
one, based on the nonextensive entropic form Sq given
in equation (1). Let us summarize the idea. The quantum
version of conditional probabilities is not easy to formulate
in spite of being so simple within a classical framework.
The difficulties come from the fact that generically ρ does
not commute with either ρA or ρB. Consistently, the con-
cept of quantum conditional entropy is a sloppy one. Abe

and Rajagopal suggested a manner of shortcutting this dif-
ficulty, namely through the adoption, of the following defi-
nitions of the conditional entropies Sq(A|B) and Sq(B|A),
respectively given by

Sq(A|B) ≡ Sq(A + B) − Sq(B)
1 + (1 − q)Sq(B)

, (4)

and

Sq(B|A) ≡ Sq(A + B) − Sq(A)
1 + (1 − q)Sq(A)

, (5)

where Sq(A + B) ≡ Sq(ρ), Sq(A) ≡ Sq(ρA) and Sq(B) ≡
Sq(ρB). Obviously, for the case of independence, i.e., when
ρ = ρA ⊗ ρB, these expressions lead to Sq(A|B) = Sq(A)
and Sq(B|A) = Sq(B), known to be true also in quantum
mechanics.

Both classical and quantum entropies Sq(A+B), Sq(A)
and Sq(B) are always nonnegative. This is not the case of
the conditional entropies Sq(A|B) and Sq(B|A), which are
always nonnegative classically, but which can be negative
quantically (see also [33]). It is therefore natural to expect
that separability implies nonnegativity of the conditional
entropies for all q. This is the criterion proposed in [27].

Peres’ criterion seems to be less restrictive than the en-
tropic one in the sense that it might provide a larger quan-
tum entangled region. Although we have no proof that it
cannot be the other way around, we have not encoun-
tered such an example. In several cases, including some
of increasingly many spins, both criteria have produced
the same result, presumably the asymptotically exact an-
swer. Details can be found in [2,11–13,19,34]. As a gen-
eral trend, it seems that the transposed matrix criterion
overestimates the separable region (i.e., underestimates the
quantum entangled region) less or equally than the condi-
tional entropy criterion does. It could well be that when-
ever both criteria produce the same result, this result is
the exact answer [35].

Equations (4, 5) have in fact been proved for a classi-
cal system [32], not for a quantum one. It seems however
plausible [27] that they preserve the same form in both
classical and quantum cases. Such conditional entropies
enable what is a necessary condition for separability. Im-
posing the conditions Sq(A|B), Sq(B|A) > 0 for all values
of q, the particular space of parameters becomes divided
into two regions: one where any conditional entropy Sq is
positive and the other one – a domain of entangled states
– where at least one conditional entropy is negative for
some q. Therefore, a line (or a frontier, generally speak-
ing) like a critical one, emerges. By the way, an interesting
related point is that of defining a measure of the degree
of entanglement. As already advanced in [29,32] one can
define an entanglement “order parameter” which plays a
role analogous to the order parameter in standard critical
phenomena (see also [36]).

To establish the separable-nonseparable frontier we
are looking for, it will become clear that the Boltzmann-
Gibbs-Shannon entropy (q = 1) is a concept too poor for
properly discussing quantum entanglement, a conclusion
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recently reached also by Brukner and Zeilinger [28] from
a different path. An appreciable amount of arguments are
now available in the literature which connect quantum en-
tanglement and thermodynamics [5,10,11,15–17,28,36].

Here we address a system of two independent harmonic
oscillators A and B to study the effect of thermal noise, as
we will introduce soon. Additionally, this system allows to
study the effect of an unbounded spectrum which is known
to produce significant differences at the thermodynamic
level. For the oscillators we consider the basis |n〉A|m〉B ≡
|n, m〉, where n, m = 0, 1, 2, ... Let us define the symmetric
and antisymmetric states |n, m±〉 ≡ 1√

2
(|n, m〉 ± |m, n〉)

for n > m. These states for the two oscillators system
are clearly isomorphic to the two spins EPR state. We
construct first a density matrix of the form

ρA+B =
∞∑

n=1

n−1∑
m=0

Cnm|n, m−〉〈n, m−| , (6)

where we choose Cnm ∝ e−(n+m)/T in order to introduce
a temperature T (noise). Since we want to study the effect
of noise on a known state, it is interesting to recover in
some limit a state isomorphic to the well known Werner-
Popescu state [1,7]. So, we generalize the weights of the
lower energy eigenstates, a kind of filtering out higher en-
ergy states such as encountered in laser physics, obtaining

ρA+B =
1 − y

4

[
|0, 0〉〈0, 0|+ |1, 1〉〈1, 1|+ |1, 0〉〈1, 0|+ |0, 1〉〈0, 1|

]

+ y b

∞∑
n=1

n−1∑
m=0

e−(n+m)/T |n, m−〉〈n, m−|, (7)

with

b ≡ 1

/ ∞∑
n=1

n−1∑
m=0

e−(n+m)/T = 2
(
1 − e−1/T

)
sinh(1/T ) ·

(8)

Finally, we include diagonal states (|n, n〉) with thermal
weights (not necessarily equal to those of the antisym-
metric component) as this further generalization does not
increase the complexity of the computations and can give
additional information. Thus, we have:

ρA+B =
1 − x − y

4

×
[
|0, 0〉〈0, 0|+ |1, 1〉〈1, 1|+ |1, 0〉〈1, 0|+ |0, 1〉〈0, 1|

]

+ x a

∞∑
n=2

e−2nα/T |n, n〉〈n, n| + y b

×
∞∑

n=1

n−1∑
m=0

e−(n+m)/T |n, m−〉〈n, m−|, (9)

where T ≥ 0, α ≥ 0 and

a ≡ 1

/ ∞∑
n=2

e−2nα/T = (1 − e−2α/T ) e4α/T . (10)

Parameter α measures the importance of the noise as-
sociated with the nondiagonal terms with respect to the
noise associated with the diagonal ones. An increase of the
temperature-like measure of noise T incorporates higher
energy levels in the mixed state under consideration.

We easily verify that TrρA+B = 1. Since the eigen-
values of ρA+B must be numbers within [0, 1], we have
0 ≤ x, y ≤ 1 and x + y ≤ 1.

Let us emphasize that the mixed state given by equa-
tion (9) is not generically a thermal equilibrium state,
although it can be close to equilibrium for appropri-
ate values of the parameters (x, y). Notice also that, for
x = y = 0, we have

ρA+B =

1
4

[
|0, 0〉〈0, 0|+ |1, 1〉〈1, 1|+ |1, 0〉〈1, 0|+ |0, 1〉〈0, 1|

]

=
1
4
1̂4, (11)

where 1̂4 is the 4-dimensional identity matrix. In other
words, this state is isomorphic to a fully random state
of two spins 1/2. Notice finally that, for T = 0 and
x = 0, we have an state isomorphic to the Werner-Popescu
one [1,7] and if additionally we set y = 1 we have ρA+B =
|1, 0−〉〈1, 0−|, which is isomorphic to the celebrated EPR
state. The approximate separable-entangled frontier for
the T = x = 0 particular case is known [12,27,29,32],
namely y = 1/3 (∀α). Before we address the discussion of
the full frontier in the (x, y, T, α)-space, it is convenient
to rewrite equation (9) in the following equivalent form:

ρA+B =
1 − x − y

4

×
[
|0, 0〉〈0, 0|+ |1, 1〉〈1, 1|+ |1, 0+〉〈1, 0+|

]

+ x a
∞∑

n=2

e−2nα/T |n, n〉〈n, n|

+
(

1 − x − y

4
+ y b e−1/T

)
|1, 0−〉〈1, 0−|

+ y b

∞∑
n=2

n−1∑
m=0

e−(n+m)/T |n, m−〉〈n, m−| · (12)

Due to the orthonormality of all the states appearing in
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this expression, the calculation of (ρA+B)q is easily carried
out. It follows

Tr(ρA+B)q = 3
(

1 − x − y

4

)q

+
xq
(
1 − e−2α/T

)q
1 − e−2qα/T

+
(

1 − x − y

4
+ 2y

(
1 − e−1/T

)
e−1/T sinh(1/T )

)q

+

(
2y (1−e−1/T )e−1/T sinh(1/T )

)q (
1 + e−q/T −e−2q/T

)
2 sinh(q/T )

(
1 − e−q/T

) ·
(13)

Let us now address the calculation of (ρB)q. We have

ρB ≡ TrAρA+B =
(

1 − x − y

2
+ ye−1/T sinh(1/T )

)
|0〉〈0|

+
(

1−x−y

2
+y sinh(1/T )

(
e−1/T −e−2/T +e−3/T

))
|1〉〈1|

+
∞∑

n=2

(
x
(
1 − e−2α/T

)
e−2(n−2)α/T

+y sinh(1/T )
(
e−n/T − e−2n/T + e−(2n+1)/T

))
|n〉〈n|,

(14)

where |n〉 denotes the nth state of oscillator B. It now
follows

Tr(ρB)q =
(

1 − x − y

2
+ ye−1/T sinh (1/T )

)q

+
(

1 − x − y

2
+ y sinh (1/T )

(
e−1/T − e−2/T + e−3/T

))q

+
∞∑

n=2

(
x
(
1 − e−2α/T

)
e−2(n−2)α/T

+y sinh (1/T )
(
e−n/T − e−2n/T + e−(2n+1)/T

))q

· (15)

Now that we have Tr(ρA+B)q and Tr(ρB)q as explicit func-
tions of (x, y, T, α), we can immediately obtain Sq(A|B)(=
Sq(B|A)) through the use of equations (1, 4) yielding

Sq(A|B) =
1

q − 1

(
1 − Tr(ρA+B)q

Tr(ρB)q

)
· (16)

Sq(A|B) as a function of (x, y) for typical values of (q, T )
and α = 1 is represented in Figures 1 and 2. By compar-
ing these figures, notice the nonuniform convergence at
T = 1/q = 0.

Figure 3 exhibits, in (y, q) space, the line verifying
Sq(A|B) = 0, for particular values of (x, T, α). The phys-
ical region is the one satisfying 0 ≤ x + y ≤ 1. Given x,
for y above this critical line and within the physical re-
gion y ≤ 1 − x, one has Sq(A|B) < 0, which signals the
existence of an entangled state. Notice that for sufficiently

Fig. 1. Sq(A|B) as a function of (x, y) for α = 1, T = 0.1 and
typical values of q.

Fig. 2. Sq(A|B) as a function of (x, y) for α = 1, typical values
of T and q = 5.

small x, the strongest restriction to the separable region
is imposed at q → ∞. As x increases, the minimum of
y occurs at a finite q, qmin (the possible nonmonotonic-
ity of Sq(A|B) with regard to q has already been noticed
by [37]). Since the strongest restriction to separability cor-
responds to the nonnegativity of both Sqmin(A|B) and
Sqmin(B|A), then this condition is the one which better
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Fig. 3. The line Sq(A|B) = 0, in (y, q)-space, for particular values of x, T = 0.5 and α = 1.

  

Fig. 4. Frontier of the region where Sq(A|B) < 0 for some q, in
the (x, y)-space for typical values of T and α = 0.1 (a), 1 (b),
5 (c). The dotted lines correspond to the locus of the vertices of
the frontier for any T . Notice that the condition Sq(A|B) < 0
for some value of q guarantees entanglement.

Fig. 5. Frontier of the region where Sq(A|B) < 0 for some q, in
the (x, y, T )-space for fixed values of x and α= 0.1 (a), 1 (b).
The entire plane x + y = 1 (∀T ) belongs to the separable-
entangled frontier.

approaches the separable-entangled frontier we are look-
ing for and which is represented in Figure 4. The entangled
region in the (x, y, T )-space is illustrated in Figure 5 for
various values of (x, α). For T = 0 and arbitrary α, the
system is entangled if (1−x)/3 < y ≤ 1−x, which imme-
diately recovers the Peres’ 1/3 criterion for x = 0. As T
increases, the entangled domain shrinks against the border
x + y = 1 and disappears at a critical T , Tc (Tc = 1/ ln 2
for x = 0).
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If the conditional entropy Sq(A|B) is a monotonically
decreasing function of q, then the strongest case corre-
sponds to the nonnegativity of S∞(A|B). Whenever the
frontier is fully defined by q → ∞, the system is entangled
in the region defined by

y∗ < y ≤ 1 − x and x < x∗ (17)

where

y∗ ≡ 1 − x

3 − 2 e−1/T (2 + e−1/T − 2 e−2/T )
(18)

and

x∗ ≡(
2(1 − e−2/T )(2 − 3 e−1/T + e−3/T − e−4/T ) − 1

)
y + 1

(5 − 4 e−2α/T )
·

(19)

However, for sufficiently small T , there is a curved line
(corresponding to the nonlinear portion of the frontier
in Fig. 4), given by y = f(x), which is defined from
the conditional entropy for finite qmin and that can be
numerically determined. In this case, the entangled region
is given by

y∗ < y ≤ 1 − x and y > f(x). (20)

An increase of the noise parameter T (see Figs. 4
and 5), i.e., an increase of the relative weight of the high
energy states of the oscillators, causes shrinking of the
entangled region. This is intuitively expected. Also, inter-
estingly enough, decreasing the parameter α (see Figs. 4
and 5), which corresponds to an increase of the noise as-
sociated with the diagonal states, causes the entangled
region to enlarge. This is not surprising after all, since
this noise makes the diagonal terms to become less ef-
fective than the off-diagonal ones, which makes quantum
coherence to be relatively stronger. The interplay of these
effects may cause an interesting re-entrance, as illustrated
in Figure 5a for the value x = 0.6. In this situation, cor-
responding in fact to small values of α, it is possible to
loose the quantum entanglement as T increases, and then
recover it back, until definitive loss for very large T . To
conclude, we believe that the present results provide quan-
titative insight on the influence of the external world (here
represented by two different types of noise) on a quantum
device. Our results could guide the engineering of entan-
gled states in the laboratory.

One of us (DP) acknowledges warm hospitality at the Centro
Brasileiro de Pesquisas F́ısicas. Also, we acknowledge partial
financial support from PRONEX, CNPq and FAPERJ.
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